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We extend our recent work on phase-field model for vesicles �D. Jamet and C. Misbah, Phys. Rev. E 76,
051907 �2007��—where only the membrane local incompressibility was treated—to the situation where the
bending forces and spontaneous curvature are included. We show how the general phase-field equations can be
derived within a thermodynamic consistent picture. We analyze a general form of the bending energy, where
the Helfrich bending force is treated as a special case. The dynamical evolution equation derived here for the
velocity field allows one to write down a constitutive law of the composite fluid: The ambient fluid plus the
membrane. This constitutive law has a viscoelastic form, the viscous part arises from the fluid, while the elastic
one represents the action of the membrane. It is shown that the elastic stress tensor is not symmetric, owing to
bending torque, inherent to a diffuse membrane model.
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I. INTRODUCTION

Vesicles and, more generally, phospholipid membranes
constitute a very active field of research in different disci-
plines. One major reason is related to the fact that they play
an essential role in biology. For example, cytoplasmic mem-
branes contain a large amount of lipid bilayer. Red blood cell
membranes may contain up to 75% of phospholipids. In the
cytoplasm, submicron vesicles are produced by the Golgi
apparatus �lipidic layers assembly� in order to carry proteins
from the interior of the cell toward the surrounding environ-
ment. The hope is that understanding some basic physical
processes of the behavior of pure lipid membranes may help
to identify some features encountered in more complex situ-
ations.

Giant vesicles �in contrast to submicron vesicles�, pro-
duced in the laboratory, constitute an attractive model system
for the viscous and viscoelastic properties of real cells �1�.
For example, several features known for vesicles �such as
tank-treading motion under shear flow, tumbling, or more
complex oscillatory motion� have been identified on red
blood cells as well.

At equilibrium the vesicle shapes are obtained from an
energy minimization �the Helfrich bending energy�. Contrari-
wise, under flow the shape results from a subtle interplay
between various forces �2�: Hydrodynamic forces, tension
field within the membrane, bending energy, etc.

The nonequilibrium problem is highly nonlinear and non-
local, and in its full generality numerical treatment seems to
be necessary in many circumstances. Several numerical tools
have been introduced: �i� Methods based on the integral rep-
resentation, by means of the Green’s function technique
�valid for Stokes flow� �3�. This technique has been used for
capsules �4� �an elastic membrane made of polymers, and

considered as a simple model mimicking red blood cells�,
and vesicles �5,6�, �ii� techniques based on dynamically tri-
angulated models �7� or particle-based mesoscale solvent,
multiparticle collision dynamics �8�, or their combination
�9�, �iii� phase-field �10–13� and level set models �14�, �iv�
the so-called immersed boundary method �15�, used to model
some features of red blood cells �16�, �v� Lattice-Boltzmann
methods �17�.

In this work we are interested in a phase-field approach.
This paper is a continuation of a previous work �18� in which
we have suggested a formulation which is consistent thermo-
dynamically. There we have treated only the first subtle part
of the vesicle problem, namely local membrane incompress-
ibility, and have shown how a phase-field model could be
built, but we have completely disregarded bending forces. In
this paper we show how to deal with the bending Helfrich
forces in a thermodynamically consistent picture.

The scheme of the paper is as follows. In Sec. II we
introduce the bending energy and derive some corresponding
quantities that will be useful later. In Sec. III we derive the
general dynamical equations, discuss the constitutive law,
and the symmetry of the stress tensor. Section IV is devoted
to a summary and a general discussion. Appendix A contains
a technical derivation of the asymmetry of the stress tensor,
and Appendix B reports on some surface invariants.

II. BENDING ENERGY

Instead of defining, as is traditionally done, an interface in
a sharp manner, the idea of the phase-field approach is to
encode the interface position in a rapid variation of a field �
that is defined in the entire space and is function of time.
This field takes a constant value in each of the coexisting
phases, but it varies quite abruptly from one phase to the
other. Typically �� tanh�r /���, where r is the coordinate
normal to the interface, and �� is a small parameter repre-
senting the width of the interfacial region. All the interfacial
properties are weighted by ����, which is a smeared Dirac
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� function. With the classical phase-field model,
����2� �1−tanh2�r /����. However, we could construct a
phase-field model for which ����2 would be, for example, a
Gaussian function. What matters is that the physical proper-
ties of the membrane are localized and the classical phase-
field model considered in this paper fulfills this requirement.
In addition, this classical model follows naturally from the
Landau-Ginzburg double-well potential. The advantage of
the phase-field approach is that the evolution equations are
defined in the whole domain without explicit reference to an
interface. The virtue of the phase-field approach is that it
enables a straightforward numerical implementation, to-
gether with a systematic account for topology changes.

The typical bending energy introduced by Helfrich �19� is
written in our phase-field approach in terms of its density
�energy per unit volume, and not per unit area, as is treated in
the sharp boundary limit�:

E =
�

2
�C − C0�2���� , �1�

where � is the rigidity of the membrane, C is the mean cur-
vature of the membrane, and C0 represents the spontaneous
curvature. In this work, we consider that C0 is a constant.
Implicit in this assumption is the fact that we assume that the
two monolayers form a single entity. It would be an interest-
ing task for future work to study the general case of nonuni-
form C0.

It is the term ���� �that tends toward a Dirac � function in
the limit of an extremely thin boundary� that allows one to
pass from an energy per unit area to an energy per unit vol-
ume. Note that since we are not interested here in a change
of topology, we do not include the classical contribution
coming from the Gauss curvature in �1� as introduced by
Helfrich �19�, since it is a topological invariant, owing to the
Gauss-Bonnet theorem �20�.

The membrane position corresponds to a particular con-
tour line of the phase-field �. Thus �� / ���� represents the
normal vector to contour lines. The mean curvature C is de-
fined by �21�

C = � · � ��

����	 . �2�

C is a function of �� and ���. Indeed, expanding expres-
sion �2� one can write

C���,���� =
1

����
� ��:�I −

��

����
�

��

����	 , �3�

where I is the identity tensor. In a subscripted form, this
yields

C��,i,�,ij� =
1

������,ij�ij − �,ij
�,i

����
�,j

����	 . �4�

We can thus formally write

E = E���,���� . �5�

From this point of view, the present model differs from a
classical phase-field model where the energy depends on �
and �� only.

We rewrite the Helfrich energy density �1� formally as
follows �by showing the independent variables, and their
composition�:

E���,���� = E�����,C���,�����

=
�

2
�C���,���� − C0�2���� . �6�

Actually the three writings �6� correspond to three hierar-
chies of models. �i� The writing on the left-hand side signi-
fies any general expression that depends on the two argu-
ments. This is the upper hierarchy, referred to as model 1. �ii�
The middle writing is a model of lower hierarchy. It shows
that ��� ,���� enter via the mean curvature, while the de-
pendence on the scalar ���� is arbitrary. This is referred to as
model 2. Finally, the writing on the right-hand side is the
explicit expression of the Helfrich model, referred to as
model 3. It turns out that several results derived here are
valid not only for model 3, but also for model 2 and/or model
1. Keeping the general form does not induce any special
complication for the derivation. Therefore, we provide the
general proof and, when necessary, we explicitly specify the
validity of the results with regard to the above three models.

The energy is an isotropic function. Thus, its form should
be frame invariant. This constraint reduces the degrees of
freedom for the dependence of E on ��� ,����, even in the
most general case, i.e., model 1. Indeed, it can be shown
�e.g., Ref. �22�� that an isotropic function of �� and ���
can depend only on the following six scalars: ����2, ��2��,
��� ·��� ·���, ��� ·��� ·��� ·���, ���� :����, and
����� ·���� :���� �23�. For model 3, it becomes clear
that among the six scalars listed above, only ����2, ��2��,
and ��� ·��� ·��� will enter �see Eqs. �3� and �6��.

Let us now present some results regarding the bending
energy, which we will need later. In the most general case
�model 1�, the differential of E reads as

dE =
�E

���
· d � � +

�E

����
:d � �� . �7�

To simplify the notations, we define the vector � and the
tensor T as follows:

� =
�E

���
, �8�

T =
�E

����
, �9�

so that

dE = � · d � � + T:d � �� . �10�

Our first aim below is to determine the explicit expressions
for T and � defined in Eqs. �8� and �9�. For this goal we shall
confine ourselves to model 3. However, the derivation of the
general phase-field model will be valid for the three models,
as long as we are not interested in writing explicitly T and �.

A. Expression for T
By definition
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Tij =
�E

��,ij
=

�E

�C
�C

��,ij

. �11�

From Eqs. �4� it is straightforward to show that

�C
��ij

=
1

������ij −
�,i

����
�,j

����	 �12�

or, in a tensorial form

�C
����

=
1

�����I −
��

����
�

��

����	 . �13�

For the particular case of model 3 where the expression for E
is given by Eq. �6�, one has ��E /�C�=��C−C0�, so that

Tij = ��C − C0���ij −
�,i

����
�,j

����	 �14�

or, in a tensorial form

T = ��C − C0��I −
��

����
�

��

����	 . �15�

It is worth noting that this expression shows that T is pro-
portional to the projection operator on the tangent plane to
the membrane.

B. Expression for �

By definition

� =
�E

���
=

�E

� ����
� ����
���

+
�E

�C
�C

���
. �16�

The determination of the expression for ��C /��,i� is a little
bit technical and is not detailed here. It is found that

�C
���

= −
3C

����2
� � + 2

�2�

����3
� � −

2

����3
� �� · �� .

�17�

Moreover, it is easy to show that

� ����
���

=
��

����
.

Therefore, for the particular case of model 3 where the ex-
pression for E is given by Eq. �6�, one has

� = −
�

2
�C − C0��5C + C0�

��

����
− 2�

C − C0

����2
������ · ��

− ��2�� � �� . �18�

III. EQUATIONS OF MOTION

In this section, we determine the form of the evolution
equations. These equations will involve, when using the sec-
ond law of thermodynamics, the expression �1� for the en-
ergy. The derivation is first given for the general model 1

corresponding to any function E��� ,����. The particular
case where the energy is given by �1� is studied in Sec. III C.

A. General case

In this whole section we consider the general model 1. To
simplify the analysis, we consider a system of uniform den-
sity �0 �for example, we could think of a local density change
in the vicinity of the membrane�. The velocity field is thus
solenoidal. This constraint on the flow is accounted for in the
momentum balance equation, as usual, by the pressure. The
general form of the equations of motion thus read as

� · u = 0, �19�

�0
du

dt
= − �P + � · �, �20�

where d /dt is the material derivative and � is the stress ten-
sor whose expression must be determined. Note that here we
have, in general, a complex fluid, and not a Newtonian fluid.
Indeed the stress tensor � contains the usual Newtonian con-
tribution, as well as a contribution coming from the mem-
brane, whose expression is to be determined. In our deriva-
tion below we shall be able to provide this new constitutive
law, which is a class of a general law for a complex fluid.

In addition to these equations, an equation of evolution
for � should be provided. It will be shown in this section that
the evolution equations follow from the second law of ther-
modynamics.

Since the system is supposed to be isothermal, the second
law of thermodynamics dictates that the free energy is a non-
increasing function of time, which reads as

d

dt
�E + �0

u2

2
	 = − � · q + � · �u · �T − Pu� − � , �21�

where q is the heat flux, � is the stress tensor, �T its transpose
and � is the energy dissipation. The first term on the right-
hand side of �21� is an energy flux �to be determined�. The
second term is also an energy flux which is quite usual: It
corresponds to the work of pressure as well as the work of
viscous and elastic forces, both of them are hidden in the
total stress tensor �. Of course as long as q �as well as �; but
this tensor has a mechanical interpretation so that one can
anticipate on the corresponding flux� is not determined there
is a certain arbitrariness in the way Eq. �21� is written. Nev-
ertheless, we write the equation in order to comply with
common usage of irreversible thermodynamics.

From Eqs. �20� and �21�, it is easy to show that

dE

dt
= − � · q + �T:�u − � . �22�

Now, from Eq. �7� we have

dE

dt
= � ·

d � �

dt
+ T:

d � ��

dt
. �23�

We now seek the expressions for �� ·d�� /dt� and
�T :d��� /dt� as functions of �d� /dt�.
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It can be shown that

� ·
d � �

dt
= � · ��

d�

dt
	 − �� · ��

d�

dt
− ��� � ��:�u ,

�24�

T:
d � ��

dt
= � · �T ·

d � �

dt
−

d�

dt
� · T	 +

d�

dt
� · �� · T�

+ ��� � � · T − ��� · T�:�u. �25�

Equations �23�–�25� entail that

dE

dt
= � · ��� − � · T�

d�

dt
+ T ·

d � �

dt
	 −

d�

dt
� · �� − � · T�

− ��� � �� − � · T� + ��� · T�:�u , �26�

Substituting this expression for �dE /dt� into Eq. �22� pro-
vides the following expression for the dissipation �:

� = − � · �q − �� − � · T�
d�

dt
− T ·

d � �

dt
	 +

d�

dt
� · ��

− � · T� + ��T + �� � �� − � · T� + ��� · T�:�u .

�27�

In order to guarantee the positivity of �, the following choice
can be made:

d�

dt
= 	 � · �� − � · T� , �28�

q = �� − � · T�
d�

dt
+ T ·

d � �

dt
, �29�

�T = − �� � �� − � · T� − ��� · T + ��D�T,

� = − �� − � · T� � �� − T · ��� + �D, �30�

where �D=
��u+�uT� is the dissipative stress tensor such
that �D :�u�0 �
 is the dynamical viscosity of the ambient
fluid, which may be taken as a function of � in order to
account, for example, for a viscosity contrast �24��.

Some general remarks are in order. The choice of the
fluxes in �28�–�30� is not unique. As discussed, for example,
in Ref. �25�, different sets of fluxes and forces can represent
equally well the system under study. As long as we do not
include nondiagonal elements �in the opposite case, the prob-
lem may become nontrivial�, there is no special care to be
taken, since what matters is �besides conservation laws� that
the choices comply with the second law of thermodynamics.
Our choice of the flux �28� is motivated by the fact that we
want our equation to reduce to the Allen-Cahn equation in
the traditional situation �say for fluid-fluid interfaces�. If an-
other choice for the flux �28� had been made, then this would
have affected the definition of q. The first two contributions
in Eq. �27� �the one appearing as a divergence and the next
one� can influence each other if another definition were
adopted. As soon as we use an Allen-Cahn type of spirit, then
q is fixed. The last contribution in �27� does not interfere

with the two other terms, owing to Curie’s principle �fluxes
and forces of different tensorial character do not couple for
an isotropic system�.

The expressions �28�–�30� are generalizations of the clas-
sical case where the energy depends only on �� and not on
���. Indeed, the evolution equation of � �28� is a generali-
zation of the classical Allen-Cahn equation, the expression
�29� for q is a generalization of the classical interstitial work-
ing �26�, and the expression �30� for the stress tensor shows
that its nondissipative part is a generalization of the classical
Korteweg tensor.

However, it is worth pointing out that the energy Ecl as-
sociated to the classical phase-field model is not accounted
for in the above presentation,

Ecl��,��� = W��� +
�

2
����2, �31�

where W��� is a double-well function and � is the capillary
coefficient.

This choice is made in order to emphasize the theoretical
issues related to the sole Helfrich energy �1�. The purpose of
the energy Ecl is to ensure that the phase-field profile across
the interface remains constantly locally as a hyperbolic tan-
gent profile. In the complete model, the energy Ecl should be
simply added to the Helfrich energy �1�, which would then
give rise to the classical terms of phase-field models in the
Allen-Cahn equation and in the expression for the stress ten-
sor.

B. Analysis of the stress tensor

Relation �30� is the general form of the constitutive law
that relates the stress tensor to the velocity field and the
phase field. A similar relation has been derived by following
another spirit �close to that presented in Ref. �11�� �14�. Note
also that in the sharp boundary model, the recent constitutive
law derived for vesicles contains the velocity field and the
shape function of the vesicle �27�. Here the shape is ac-
counted for by the phase field.

Note that expression �30� contains a dissipative part �D

�which arises from viscous friction�, and a nondissipative
one �C �arising from membrane forces; it is an elastic type of
contribution�. Thus the constitutive law �30� is viscoelastic.
Finally, as will be shown below, the elastic stress tensor �C is
nonsymmetric.

Let �C denote the stress tensor associated to the bending
energy,

�C = − �� − � · T� � �� − T · ��� . �32�

The expression for this stress tensor is not easy to interpret.
We thus analyze the corresponding force, i.e., � ·�C. It can
straightforwardly be shown that

� · �C = − �E − �� · �� − � · T�� � � . �33�

The gradient term of the above expression can be absorbed
into the pressure term of the momentum balance equation
and is thus not really relevant. The second term shows that
the effective force due to the energy is a force normal to the

D. JAMET AND C. MISBAH PHYSICAL REVIEW E 78, 031902 �2008�

031902-4



membrane �i.e., parallel to ���. This force, denoted FC, is
proportional to � · ��−� ·T�, which is the term that also ap-
pears in the Allen-Cahn equation �28�. To analyze this term,
we seek for an interpretation of it in terms of classical inter-
facial geometric properties �such as the curvature or the nor-
mal to the interface�.

C. Particular case of the Helfrich energy

In this section we consider the explicit form of the Hel-
frich energy. We thus consider that the expression for the
energy E��� ,���� is given by Eq. �1�, which corresponds
to model 3. We focus our attention on the term � · ��
−� ·T� that appears in the Allen-Cahn equation as well as in
the expression for the interfacial force �see Eqs. �28� and
�33��.

After lengthy algebra, it can be shown from the expres-
sion �15� of T that

� · T = � � C · �I −
��

����
�

��

����	 − �
C − C0

����2
���� · ��

− ��2�� � �� − 2�C�C − C0�
��

����
. �34�

By using expression �18� for �, one finds immediately

� − � · T = −
�

2
�C2 − C0

2�
��

����
− �

C − C0

����2
���� · ��

− ��2�� � �� − � � C · �I −
��

����
�

��

����	 .

�35�

The second term of this expression is rather difficult to
interpret. We therefore seek for another expression for this
term.

After lengthy algebra, one finds that

��� · �� − ��2�� � � = − ����2C ��

����
+ ���� � ����

· �I −
��

����
�

��

����	 . �36�

Thus

� − � · T =
�

2
�C − C0�2n −

�

����
� ��C − C0������

· �I − n � n� , �37�

where n is the unit normal to the interface defined by

n =
��

����
. �38�

After several algebraic manipulations, one finds that

� · �� − � · T� =
�

2
�C − C0��− C�C + C0� + 4H� − ��s · ��sC� ,

�39�

where H is the Gauss curvature defined by

H =
1

2
���s · n�2 − �sn:�sn� . �40�

The expression �39� combined with Eq. �33� gives rise to the
following form for the force FC deriving from the Helfrich
energy:

FC = −
�

2

�C − C0��− C�C + C0� + 4H� − 2�s · ��sC�� � � .

�41�

This latter expression is exactly that found in Ref. �11�.
However, there is an important difference. Indeed, the deri-
vation in Ref. �11� is based on an approximation of the force
expressed in its divergence form � ·�C, where �C is given by
Eq. �32�. This first-order approximation in �=C h, where h
is the equilibrium interface thickness, assumes that the pro-
file of the phase-field across the interface is the equilibrium
profile. Here we have proven that the form of the force is the
same even far from equilibrium. This means that the total
force �before any approximation� derived in �11� �Eq. �5��,
can be written as a full divergence of some quantity �the
quantity is nothing but �C of the present paper�. This has
indeed been recently shown �14�. Nevertheless, the present
general approach shows that the force can be written as the
divergence of a tensor, not only in the particular case of
model 3, as considered in �14�, but even in the general case
of model 1.

Some additional remarks are in order. In our analysis, the
interface has an implicit representation through the continu-
ous function ��x , t�. This function can be any function and
not necessarily a function whose variation is of hyperbolic
tangent type as in phase-field models: it could be a signed
distance function as in the level set method, for instance. In
this regard, the mean and Gauss curvatures �28�, defined,
respectively, by Eqs. �2� and �40�, do represent the actual
curvatures of the membrane and should not be considered
only as approximations. In contrast, in sharp interface mod-
els, the representation of the interface is explicit. Thus, in an
effort to compare the present model to a sharp interface
model, the main issue is to determine whether the displace-
ment of the interface is the same with both models. In our
model, the displacement of the interface is accounted for
through the equation of evolution of the phase field, i.e., the
Allen-Cahn equation �28� �along with Eq. �39��. Currently,
the method used to derive the properties of this equivalent
surface of discontinuity is the matched asymptotic method,
as used in �11�. However, this study is beyond the purpose of
this paper.

D. On the asymmetry of the stress tensor

In this section, we discuss an issue that is triggered by the
phase-field approach. Indeed, contrary to the classical de-
scription of a Newtonian fluid, the stress tensor � is not sym-
metric. This feature can easily be shown. From basic con-
cepts of physics of continuous media, it is known that this
means that internal torque must exist within the system. One
is naturally led to ask the following questions: �i� Is it physi-
cally relevant and �ii� does one have to account also for the
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angular momentum balance equation? Indeed, in continuum
mechanics, the angular momentum balance equation is in
general necessary in order to have a closed set. However, in
the particular case where the stress tensor is symmetric, it
turns out that this equation is equivalent to the momentum
balance equation and thus does not provide any additional
information. However, when the stress tensor is not symmet-
ric, the angular momentum balance equation should be ac-
counted for.

Actually, this problem is akin to that of thin plates in
elasticity theory. In our case the plate means a fluid mem-
brane which does not resist shear, but which is endowed with
a bending energy �as solid plates�. The symmetry of the
stress tensor does not hold as soon as one takes the limit of a
thin plate. To illustrate this let us consider a portion of a thin
plate as shown in Fig. 1 �which is macroscopically curved�.
We consider only the nondiagonal elements of the stress ten-
sor �ij �i.e., we assume for simplicity that �xx=�yy =�zz=0�.
Thus, the contribution �zxdAz designates the force which is
directed along Ox and is exerted on the upper face �29�. If
the plate is in contact with a fluid at rest �this assumption is
not restrictive�, then �zx=0. The term �xzdAx is the force
exerted on the lateral side, and is directed along z. It is clear
that this force �for a curved plate� is nonzero �30�, as it is an
internal force; it is the stress generated internally by the plate
bending. It follows thus that �xz��zx. As a consequence of
this, the torque around the Oy axis is nonzero.

IV. CONCLUSION

This paper is a natural continuation of a paper �18� �re-
ferred to hereafter as paper I�. Here we have extended the
model in order to treat bending forces �written in a more
general form�. In paper I we have treated the local incom-
pressibility of the membrane. The full model equations, in-
cluding both effects, is obtained just by a simple superposi-
tion of the two effects. Namely, the full model is obtained by
adding to the bending energy, the energy associated with
compressibility, as introduced in paper I. This is why we
have not felt it worthwhile to write here the full set of equa-
tions. We have now provided a thermodynamically consis-
tent formulation including the two main effects of the
physics of membranes: Bending forces and local incompress-
ibility. Actually, in addition to the above �physical� forces, it
is well known that the term ����2 of the classical phase-field

model produces an artificial surface tension. A membrane has
intrinsically not such contribution, and one must thus sup-
press this effect. A possibility has been suggested in Ref. �31�
for fluid-fluid �32� interfaces, and has been adopted for
vesicles �10,11�. If one must follow the same strategy, this
would destroy the thermodynamical consistency of the
model. What is needed is to develop a model where the
suppression of surface tension originating from the term
����2 would be contained in an energy functional. This issue
is currently under investigation.

Interesting facts have followed from the present study.
First, we have been able to express the total stress tensor �of
the fluid and membrane� in a form where viscoelasticity is
simply exhibited. In Ref. �14�, it has been shown also that
the membrane contribution appears in the momentum bal-
ance equation under a divergence �of a second-order tensor�.
Note, however, that the two treatments, the one presented
here and that of Ref. �14�, have two different starting points.
Here, it is postulated from the very beginning that the total
stress tensor must be absorbed under a divergence �in order
to comply with the general spirit of traditional continuum
media�, and then the derivation is based on the first and
second laws of thermodynamics, together with conservation
laws. In Ref. �14�, as well as in �11�, the membrane force
was added in the momentum equation as a functional deriva-
tive of the membrane displacement, multiplied by ���� �a
Dirac-like function enforcing localization of the membrane
force�. It did not appear obvious that the membrane force in
�11� could simply be written as a divergence �it has been
shown now �14� that this is indeed the case�. The present
method has the advantage of deriving in a systematic way
the composite fluid constitutive law. Indeed its starting point
complies with general continuum media theory, in that any
kind of membrane force �be it of bending, or of any other
nature� is automatically embedded within a divergence of a
rank-2 tensor, and then the force is derived a posteriori from
the first and second laws of thermodynamics.

Second, we have shown that the stress tensor associated
with the bending forces is not symmetric. Finally, we hope
that after having solved the last issue regarding �artificial�
surface tension, we will have at our disposal a thermody-
namically consistent phase-field model for studying numeri-
cally nonequilibrium problems pertaining to membranes,
vesicles, and interactions with flows in various geometries
and circumstances.
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APPENDIX A: STUDY OF THE SYMMETRY OF THE
CURVATURE STRESS TENSOR

The general expression for the curvature stress tensor �C

is given by Eq. �32�. In this section, we study the general
properties of symmetry of this tensor. We show in particular
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τxz xz

zx

zxτ

τ

τ

FIG. 1. �Color online� Schematic view of the forces. The force
contribution shown in red �horizontal� vanishes while the one in
blue �vertical� is nonzero �at least it is different, in a more general
situation; see text�.
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that in the case of the Helfrich expression �1�, �C is not
symmetric.

Our study is restricted to the case where the energy of the
system is an isotropic function of the variables ��� ,����,
which limits the dependence of the energy on only six sca-
lars. However, we showed in Sec. II that in the particular
case of the Helfrich energy �1�, the energy depends only on
the three following scalars:

a = ����2, b = �2�, c = �� · ��� · �� . �A1�

Therefore, we limit our analysis to the case where the energy
is a general function of these three scalars, E�a ,b ,c�.

After some algebraic manipulations, it can be shown that
the general expression for the stress tensor �C is the follow-
ing:

�C = �− 2
�E

�a
+ �� �E

�c
	 · �� +

�E

�c
��2��
 � � � ��

−
�E

�b
� �� −

�E

�c
���� · ���� � �� + ��

� ��� · ����� + �� �E

�c
	 � �� . �A2�

It is straightforward to show that the first three tensors ap-
pearing on the right-hand side of the above equation are
symmetric. Thus, we now study the symmetry properties of
the tensor ���E /�c� � ��. It can be shown that

�� �E

�c
	 � �� = 2

�2E

�a � c
��� · ���� � �� +

�2E

�b � c
� ��2��

� �� +
�2E

�c2 �2��� · ���� · ��� + ���

� ���:����� � �� . �A3�

It is straightforward to show that none of the three tensors
appearing on the right-hand side of the above relation are
symmetric.

Therefore, the tensor �C is not symmetric as soon as
��E /�c� is not constant.

In the particular case of the Helfrich energy �1�, one has

�E

�c
= − ��C − C0� . �A4�

Now, the curvature C depends on the three variables �a ,b ,c�
�see Eq. �3��, so that ���E /�c��0. This shows that the cur-
vature tensor �C is not symmetric.

APPENDIX B: SURFACE INVARIANTS

The two parameters of a surface are the two main radii of
curvature R1 and R2. Two other parameters are important:
The mean curvature C and the Gauss curvature H. These are
related to the R1 and R2 by

C =
1

R1
+

1

R2
, �B1�

H =
1

R1

1

R2
. �B2�

It is possible to relate C and H to the invariants of the tensor
�sn. Indeed, it can be shown that

C = �s · n , �B3�

H =
1

2
���s · n�2 − �sn:�sn� . �B4�

The third invariant of �sn is nil �33�.
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